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Abstract  The signaling compound nitric oxide 
(NO) might play an important, yet unquantified role 
in mediating soil biogeochemical Carbon and Nitro-
gen cycles. This study quantified the effects of differ-
ent soil-typical exogenous NO concentrations on the 
microbial community, on fertilizer N turnover, and on 
C and N trace gas fluxes of agricultural soil. For this, 
we repeatedly established soil NO concentrations of 
either 0, 200, 400, and ppbv˗NO in soil mesocosms 
for in total of 12  days, followed by high-resolution 
automated measurements of CO2, NO, CH4, and N2O 
fluxes, molecular analysis of microbial community 

composition and 15N-isotope-tracing based assess-
ment of fertilizer N turnover. We found no effects of 
different NO levels on microbial communities and 
CO2, CH4, and NO fluxes. However, at 200 ppbv con-
centration, exogenous NO promoted microbial assim-
ilation of fertilizer N. In contrast, at 400 ppbv˗NO 
concentration, microbial biomass N was reduced, 
and microbial uptake of fertilizer N was inhibited, 
accompanied by a 33% reduction of N2O emissions. 
This suggested a promoting effect of 200 ppbv˗NO 
on the physiology of cells involved in heterotrophic 
microbial N turnover, probably reinforcing the role 
of cell-endogenous NO. In contrast, the higher exog-
enous NO concentrations of 400 ppbv seemed to 
inhibit heterotrophic microbial inorganic N assimila-
tion, with however no increase in N2O emissions due 
to detoxification mechanisms. In conclusion, our pio-
neering study provides first insights into impacts of 
exogenous NO on soil C and N biogeochemistry in 
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natural soil systems and reveals a NO concentration-
dependent regulation of microbial N retention.

Keywords  Automated mesocosm system · Nitric 
oxide (NO) · Soil gas fluxes · Microbial activity

Introduction

Nitric oxide (NO) is a colorless, odorless gas with 
significant effects on human health and key roles in 
plant and soil microbial metabolism (Fowler et  al. 
2009). As a reactive free radical, NO is a primary 
nitrogen (N) oxide, that is produced and consumed 
by microbial activity, soil physico-chemical reac-
tions, combustion processes, and plant physiological 
pathways (Medinets et  al. 2015; Olivier et  al. 1998; 
Wendehenne et al. 2014). In plants, NO acts as a criti-
cal signaling molecule, regulating growth, develop-
ment (e.g., seed germination, root growth, stomatal 
closure), and responses to biotic (e.g., pathogens, 
parasites) and abiotic (e.g., drought, salinity) stresses 
(Gupta et al. 2022; Ma et al. 2020; Wendehenne et al. 
2014; Yu et al. 2014). Nitric oxide also plays a mul-
tifaceted role in soil microbial physiology, e.g., serv-
ing as an essential intermediate in N metabolism, as a 
signaling compound essential for cell physiology, and 
as a toxic molecule, requiring bacterial regulatory and 
protective mechanisms (Rinaldo et al. 2018). Due to 
its free diffusivity across biological membranes, both 
cell-endogenous and cell-exogenous NO can modu-
late the activities of cellular and extracellular pro-
teins, thereby implementing important physiological 
functions (Medinets et al. 2015).

In well-aerated soils, autotrophic bacteria such as 
Nitrosobacteria and Nitrobacteria as well as ammo-
nia-oxidizing archaea (AOA) produce NO as a by-
product during the oxidation of ammonium (NH4

+) 
to hydroxylamine (NH2OH) in nitrification, before its 
subsequent conversion to nitrite (NO2

−) and nitrate 
(NO3

−), utilizing oxygen (O2) as the electron acceptor 
(Conrad 1996; Butterbach-Bahl 2011), High gas dif-
fusivity allows NO to escape into soil or further to the 
atmosphere before further reduction (Heil et al. 2016; 
Skiba et al. 1997). In addition, NO serves as an inter-
mediate in nitrifier-denitrification, a process facili-
tated by ammonia-oxidizing bacteria (AOB), such as 
Nitrosomonas europaea, and AOA, such as Nitros-
opumilus maritimus. Under O2-limited conditions, 

NO produced during ammonia oxidation is detoxified 
into nitrous oxide (N2O) or dinitrogen (N2) (Martens-
Habbena et al. 2015; Remde and Conrad 1990; Wrage 
et al. 2001).

In soils with higher water-filled pore space 
(WFPS), many anaerobic microsites allow for denitri-
fication (Groffman et al. 2006). This process is facili-
tated by a series of metalloenzymes, including nitrate 
reductase (Nar and Nap), nitrite reductase (Nir), nitric 
oxide reductase (Nor), and nitrous oxide reductase 
(Nos). Nitric oxide is a free and obligatory intermedi-
ate produced by nitrite reductases and is subsequently 
reduced to N2O and N2 (Borrero-de Acuña et  al. 
2016). Two primary nitrite reductases˗cytochrome 
cd1, commonly found in Gram-negative bacteria, 
and copper-containing nitrite reductase, catalyze the 
production of NO (Korner and Zumft 1989; Jackson 
et al. 1991). Genetic studies in Pseudomonas aerugi-
nosa have identified nitric oxide reductase (NorBC) 
and the regulatory protein NosR as essential com-
ponents of the denitrification network, with NorBC 
facilitating NO reduction to N2O and NosR regulat-
ing Nos gene expression and machinery assembly 
(Borrero-de Acuña et  al. 2016 and 2017). In addi-
tion, Nor, a membrane-bound enzyme located in the 
periplasmic space, converts NO to N2O, maintaining 
low intracellular NO levels (1–30 nM) in bacteria like 
Pseudomonas stutzeri and Azospirillum brasilense, 
thereby protecting cells from NO-induced damage 
(Remde and Conrad 1991). The activity of Nir and 
Nor varies with the bacterial species as well as envi-
ronmental factors like pH, O2 levels, and substrate 
availability (Bergaust et al. 2010; De Boer et al. 1996; 
Ray and Spiro 2023). Additionally, NO inhibits key 
microbial enzymes by forming nitrosyl complexes: 
nitrogenase, critical for nitrogen fixation (e.g., rhizo-
bia–legume symbiosis); cytochrome aa3 in heme-
copper oxidases, which affects O2 reduction, and Nor, 
which interferes with the conversion of NO to N2O 
(Hayashi et  al. 2007; Hendriks et  al. 1998; Sánchez 
et al. 2011). These processes are integral to N cycling 
and play a crucial role in bacterial energy conserva-
tion. The reduction of NO to N2O is coupled with 
proton translocation in some species, enabling ATP 
synthesis under O2-limited conditions (Gopalasingam 
et al. 2019).

Beyond the soil biological process, NO undergoes 
both non-enzymatic and chemical transformations in 
soil, contributing to its detoxification and the N cycle. 
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It reacts with reduced metals like Fe2+ and organic 
matter, forming intermediates such as hyponitrite ( 
N2O2

2−) and resulting in the production of N2O or 
N2 (Jones et al. 2015; Lionetti et al. 2016). Addition-
ally, NO interacts with oxidized soil components, 
such as manganese oxides, facilitating its oxidation 
to NO3

− (Zhang et al. 2018). Furthermore, NO exhib-
its significant toxicity to bacteria through the forma-
tion of reactive species like peroxynitrite (ONOO−), 
which oxidizes sulfhydryl groups in proteins, impair-
ing their functionality (Ji et  al. 2006). Additionally, 
NO interacts with proteins to form S-nitrosothiols 
and causes DNA damage via cytosine deamination, 
resulting in mutagenic effects, such as C → T transi-
tions (Smith and Marletta 2012; Wink et al. 1991). In 
fungi, NO induces nitrosative stress, disrupts cellular 
structures, and impairs critical processes like growth 
and virulence, as observed in Candida albicans and 
Aspergillus nidulans (Amahisa et al. 2024; Chiranand 
et al. 2008). To counteract these toxic effects, protec-
tive strategies include NO-binding cytochrome c′, 
which mitigates NO toxicity by acting as a storage 
or detoxification mechanism (Mayburd and Kassner 
2002), while reversible S-nitrosation regulates pro-
tein activity and protective gene expression, enabling 
bacteria to adapt to nitrosative stress (Gusarov and 
Nudler 2012). These enzymatic activities are tightly 
regulated at transcriptional and post-transcriptional 
levels, allowing bacteria to efficiently balance N 
metabolism while minimizing the accumulation of 
toxic NO intermediates. The transient presence of 
NO is regulated by Nor, which facilitates efficient N 
metabolism while mitigating toxicity, thereby ena-
bling bacteria to thrive across diverse ecological 
niches (Hino et  al. 2010). Moreover, maintaining an 
optimal NO balance is critical; elevated concentra-
tions promote biofilm formation (e.g., Pseudomonas 
aeruginosa), whereas reduced levels enhance bacte-
rial motility (Fuente-Núñez et al. 2013).

Despite these multiple effects of NO and inter-
actions of NO with microorganisms as revealed in 
pure culture and molecular studies, the actual quan-
titative role of different exogenous NO concentrations 
on biogeochemical C and N turnover processes and 
trace gas production under natural soil conditions is 
largely unknown. Nevertheless, most previous stud-
ies on microbial resilience to exogenous NO have 
focused on clinical settings (Ghaffari et  al 2006; 
Miller et  al. 2004 and 2009). Here we conducted a 

pioneering study to address the key knowledge gap 
on how different NO concentrations affect soil micro-
bial community, biogeochemical C and N turnover, 
and soil-atmosphere exchange of C and N trace gases 
in agricultural soil. To achieve this, we utilized a 
recently developed automated soil mesocosm system, 
that allows precise manipulation of soil and head-
space NO concentrations while continuously moni-
toring C and N trace gas fluxes (Subramaniam et al. 
2024). In this study, we used this system to manipu-
late soil NO concentrations in combination with the 
application of 15N labeled mineral fertilizer to quan-
tify fertilizer N turnover and fate, and C and N trace 
gas fluxes as influenced by different NO levels. The 
NO exposure levels were chosen based on long-term 
high resolution soil air NO concentration measure-
ments in a N-saturated temperate forest soil (Medi-
nets et al. 2019).

We hypothesized that exogenous NO would sig-
nificantly alter the microbial community and, thus, 
mineral N turnover and microbial N assimilation, as 
well as N and C trace gas exchange between the soil 
and atmosphere. Specifically, we expected that high 
NO concentrations (400 ppbv) would negatively soil 
respiration and microbial N uptake due to their tox-
icity. However, detoxification at these concentrations 
would likely increase N2O emissions, whereas such 
effects would not be observed at more moderate NO 
concentrations (200 ppbv).

Materials and methods

Soil preparation for incubation

The soil used throughout the experiment was 
obtained from abandoned cropland at CEREEP (Cen-
tre de Recherche en Ecologie Prédictive) situated in 
Saint-Pierre-les-Nemours, France (48°17′14.48″ N, 
2°40′34.64″ E). We chose the soil because it is repre-
sentative for many agricultural soils in central Europe 
and provides good diffusive properties. The soil is 
classified as Cambisol (IUSS Working Group WRB 
2022) and has a sandy loam texture, consisting of 
74.1% sand (0.02–2 mm), 19% silt (0.002–0.02 mm), 
and 6.9% clay (< 0.002  mm). Other soil charac-
teristics include a soil organic carbon content of 
14.7 g  kg−1, a total nitrogen content of 1.19 g  kg−1, 
and an average bulk density of 1.3 kg m−3. The initial 
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soil pH was 7.73. After collection, the soil was sieved 
at 4 mm, homogenized, air-dryed, and stored at 4 °C 
to limit microbial activity until the start of the experi-
ment. The soil was then packed into the cylindrical 
incubation mesocosms (see below) of the incuba-
tion system. This process involved layering the soil 
material in 2 cm increments, thereby compressing it 
to attain the original bulk density of 1.3  g  cm−3, to 
a final height of 10  cm (1633  g soil dry weight per 
mesocosm).

Automated soil mesocosm incubation system

The study used an automated soil mesocosm incu-
bation system consisting of a thermostatic cabinet, 
incubation vessels, a control unit, a NO mixing 
device, and a multi-gas analyzer to perform incu-
bations under controlled conditions and to measure 
C and N gas concentrations at high resolution after 
adjusting soil NO levels (Subramaniam et al. 2024). 
As illustrated in (Fig. 1), the system housed twelve 
cylindrical soil mesocosms (internal Ø: 126.5 mm, 

inner height: 200 mm, volume: 2512 cm3) made of 
polymethyl methacrylate, which were divided into 
two blocks for each experimental iteration. The 
first block, referred to as untreated, contained six 
mesocosms exposed only to ambient air without NO 
[NO0]. The second block, referred to as treated, was 
exposed to elevated NO concentrations (Experiment 
1:  200 ppbv–NO [NO200] and Experiment 2:  400 
ppbv–NO [NO400]) by mixing NO with synthetic air 
in an additional gas mass flow controller to achieve 
the predefined levels. To ensure gas tightness, the 
mesocosms were equipped with double-sealed 
lids. Airflow for flushing the mesocosms could be 
controlled and directed by mass flow controllers 
and solenoid valves from either the headspace or 
the bottom. A computerized control unit allowed 
control of temperature, humidity, headspace, and 
soil gas flow. Gas flow from the mesocosms was 
directed through multi-position valves to a multi-
gas analyzer for continuous monitoring of trace gas 
concentrations, including NO, N2O, NO2, CH4, and 
CO2, using mid-infrared laser spectrometry under 

Fig. 1   Scheme of the experimental incubation and measure-
ments. This figure showcases the soil mesocosm incubation 
system, which includes a bottom inlet for soil flushing with 
NO. Panel a presents the setup of the soil-incubation system, 
while panel b illustrates the plant-free soil experiment compar-
ing control mesocosms, which received NO-free air [NO0], to 

those treated with nitric oxide-enhanced air at concentrations 
of 200 ppbv˗NO [NO200] in Experiment 1 and 400 ppbv˗NO 
[NO400] in Experiment 2, with each treatment block containing 
six replicates and panel [c] shows the experimental outcomes, 
including continuous gas flux measurements, microbial N turn-
over, and microbial guild analysis



Biogeochemistry          (2025) 168:58 	 Page 5 of 19     58 

Vol.: (0123456789)

vacuum conditions. This process followed a 144-
min sampling sequence, consisting of a 6-min meas-
urement for each mesocosm (outlet) and a 6-min 
measurement for the reference chamber (inlet) 
across the 12 mesocosms. The entire system was 
operated in either the NO soil flush mode or in the 
headspace gas flux measurement mode. That was, 
during the incubation we repeatedly established 
periods of soil NO flushing followed by periods of 
trace gas flux measurement (Fig.  2). The collected 
data were analyzed by a custom R-package to cal-
culate trace gas fluxes, using average gas concentra-
tions during steady-state conditions to quantify soil 
mesocosm gas exchange, based on the mass balance 
of inlet and outlet concentrations. Further technical 
details on the system and the calculation of trace 

gas flux rates can be found in (Subramaniam et al. 
2024).

Soil incubation condition and NO treatment 
application

We performed two consecutive incubation experi-
ments of 37  days each under completely identical 
conditions except for the NO concentrations (soil 
concentrations of NO200 vs. NO400 in the treated 
mesocosms) (Fig.  2). Incubations started with a 
6-day preincubation period at a constant tempera-
ture of 20  °C. On day 1, the WFPS of the air-dried 
soil was set at 20% (128 ml per mesocosm) and then 
adjusted to 40% WFPS (256 ml per mesocosm) start-
ing on day 2, and was maintained at this level for 
the remainder of the experiment. To ensure uniform 

Fig. 2   Schematic representation of experimental incubation 
conditions for NO-treated mesocosms. The study consisted of 
two subsequent incubation experiments under identical condi-
tions except for different NO concentrations in the treated mes-
ocosms. Panel a illustrates the flushing pattern during alternat-
ing operations between headspace flushing (allowing for trace 
gas flux measurements) and soil flushing (allowing to establish 

soil NO concentrations of 200 or 400 ppbv), while Panel b rep-
resents the soil flushing patterns for treatments of Experiment 
1: 200 ppbv˗NO [NO200] and Experiment 2: 400 ppbv˗NO 
[NO400], respectively. Both untreated and treated mesocosms 
were randomly arranged within the thermostatic cabinet. As 
indicated the soil sampling was conducted at T1 (Day 6), T2 
(Day 13), and T3 (Day 37)
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percolation throughout the soil column, the soil sur-
face was sprayed several times with Milli-Q water 
(Subramaniam et  al. 2024), with periodic adjust-
ments made by adding Milli-Q water to maintain the 
desired gravimetric water content. Weeds were peri-
odically removed from the mesocosms with sterile 
forceps as soon as they appeared prior to rewetting. 
On day 13, the soil was labeled with (15NH4)2SO4) 
with a 30 atomic% 15N enrichment, applied at a rate 
of 60 kg N ha⁻1 (23.1 mg N per mesocosm) immedi-
ately after the initial NO treatment. For this purpose, 
12 ml of (15NH4)2SO4 solution was injected into each 
mesocosm (six injections per mesocosm) at a depth 
of 2 cm in all twelve mesocosms using custom-made 
stainless steel side-port cannulas to ensure homoge-
neous isotope distribution and minimize immediate 
NH4

+ volatilization.

Mesocosm sampling and soil biogeochemical 
analyses

Soil samples were taken on days 6 (T1), 13 (T2), and 
37 (T3) as shown in (Fig. 2). At T1 and T2, surface 
soil subsamples (ca. 0–2 cm) were collected to ana-
lyze dissolved organic nitrogen (DON), NH4

+, NO3
−, 

and soil microbial biomass nitrogen (MBN) concen-
trations, as well as microbial community composition. 
Net nitrification rates were calculated from the nitrate 
concentration changes over time. The final sampling 
T3 was a complete destructive sampling of two soil 
layers (0–5 cm and 5–10 cm) with the primary goal of 
establishing the fertilizer 15N balance, i.e., to analyze 
15N recovery in bulk soil total nitrogen (TN), extract-
able organic and mineral N, and microbial biomass N 
(Dannenmann et al. 2016). For this purpose, all soil 
samples were thoroughly mixed, and representative 
subsamples of 50 g were extracted with 0.5 M K2SO4 
at a soil: solution ratio of 1:2 as described in detail 
in (Dannenmann et al. 2009). The extracts were fro-
zen until further analysis. Subsamples of the extracts 
were used for the analysis of NH4

+ and NO3
− concen-

trations using a microplate spectrophotometer (Dan-
nenmann et al. 2018), total dissolved nitrogen (TDN) 
and dissolved organic carbon (DOC) concentra-
tions using a TOC/TN analyzer (Dannenmann et  al. 
2016). DON was calculated by subtracting mineral N 
concentrations from TDN concentrations (Dannen-
mann et  al. 2016). Additional soil subsamples were 
extracted after chloroform fumigation, followed by 

TDN analysis to calculate microbial biomass using 
the chloroform fumigation extraction method with-
out correction factor (Dannenmann et al. 2018). Soil 
extracts were also analyzed for 15N enrichment in 
NH4

+, NO3
−, DON, and MBN using sequential dif-

fusion on acid traps, followed by coupled elemental 
analysis-isotope ratio mass spectrometry (EA-IRMS) 
according to (Dannenmann et  al. 2016). Approxi-
mately 10 g of soil from each depth was dried to con-
stant weight at 55  °C, ground, and analyzed for 15N 
content using EA-IRMS according to (Dannenmann 
et al. 2018). We calculated the 15N excess recovery in 
the measured N compounds and established the fer-
tilizer 15N balance and net nitrification using the for-
mulas provided by (Dannenmann et al. 2016).

Community composition and diversity of soil 
microbial communities

Further soil subsamples were immediately frozen 
after sampling. DNA was extracted from soil samples 
using the DNeasy PowerSoil HTP 96 well DNA iso-
lation kit (Qiagen, France) following the manufactur-
er’s instructions. Quantification of the extracted DNA 
was performed using the Quant-IT dsDNA HS Assay 
Kit (Invitrogen, Carlsbad, CA, USA). The V3–V4 
region of the 16S rRNA gene was amplified using 
the primers 341F (5′-CCT​ACG​GGRSGCA​GCA​G-3′) 
and 805R (5′-GAC​TAC​CAG​GGT​ATC​TAA​T-3′). The 
fungal ITS2 region was amplified using the prim-
ers ITS3F (5′-GCA​TCG​ATG​AAG​AAC​GCA​GC-3′) 
and ITS4R (5′-TCCTCSSCTT​ATT​GAT​ATG​C-3′). 
Amplicons were generated using a two-step PCR 
approach (Berry et al. 2011) and under PCR thermo-
cycling conditions as described in (Romdhane et  al. 
2022). After checking the size of the PCR amplicons 
on a 2% agarose gel, the final PCR products were 
purified and their concentrations normalized using 
the SequalPrep Normalisation plate kit (Invitrogen, 
Carlsbad, CA, USA). Sequencing was performed on 
an Illumina MiSeq (2 × 250 bp) using the MiSeq Rea-
gent Kit v2. Demultiplexing of samples and trimming 
of Illumina adapters and barcodes were performed 
with the Illumina MiSeq Reporter Software (version 
2.5.1.3). Sequences were processed using an in-house 
Python pipeline (https://​forge​mia.​inra.​fr/​vasa/​illum​
iname​tabar​coding). Briefly, paired-end sequences 
were assembled using PEAR (version 0.9.8) (Zhang 
et  al. 2014) with default settings. Further sequence 

https://forgemia.inra.fr/vasa/illuminametabarcoding
https://forgemia.inra.fr/vasa/illuminametabarcoding
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quality checks, including elimination of short 
sequences (< 400  bp for 16S and < 300  bp for ITS), 
were performed using the QIIME pipeline (version 
1.9.1) (Caporaso et  al. 2010). Reference-based and 
de novo chimera detection and OTU clustering were 
performed using VSEARCH (version 2.14.2) (Rognes 
et  al. 2016) and the SILVA representative sequence 
set for 16S and UNITE’s ITS2 reference dynamic 
dataset for ITS. Thresholds for OTU picking were set 
at 94% for 16S and 97% for ITS based on replicate 
sequencing of a bacterial mock community (Rom-
dhane et  al. 2022). Taxonomy was assigned using 
UCLUST (USEARCH version 11) (Edgar 2010) and 
the SILVA database (version 138.1/2020) (Quast 
et al. 2013) for 16S and BLAST (Altschul et al. 1990) 
and the UNITE reference database (version 8.3/2021) 
(Nilsson et al. 2019) for ITS. Sequences from the 16S 
rRNA gene that were classified as mitochondria or 
chloroplasts were excluded from the analysis.

After the initial sequence processing, 8 070 OTUs 
(59 946 ± 7 774 (average ± s.d.) reads per sample) and 
5 820 OTUs (30 585 ± 5 343 reads per sample) were 
generated for 16S rRNA and ITS, respectively. Alpha 
diversity (i.e., OTU richness and Shannon index) was 
calculated after rarefaction to 41,000 reads per sam-
ple for 16S and 20,000 for ITS. Samples under rar-
efaction limits were excluded from the analyses.

Data processing and statistics

Gas concentration data from the experiments were 
processed using a custom R-script to calculate trace 
gas fluxes (Subramaniam et al. 2024). Statistical anal-
ysis was performed using a repeated-measures paired 
t-test with a significance level of 0.05 to assess the 
effects of elevated NO concentrations on soil-atmos-
phere trace gas fluxes and to compare cumulative 
fluxes between control and NO-flushed soils. IBM 
SPSS Statistics 27.0 was used to identify significant 
differences in trace gas fluxes between control [NO0] 
and treated [NO200 or NO400] mesocosms. In addi-
tion, simple t-tests were used to compare cumulative 
fluxes across the entire dataset and within each phase 
(P1–P6). All graphical representations of the data, 
including gas flux graphs, were generated using Orig-
inPro 2020b (OriginLab Corporation, Northampton, 
MA, USA).

For metagenomic analysis, principal Coordinates 
Analysis (PCoA) and permutational multivariate 

analysis of variance (PERMANOVA) were calculated 
using Bray–Curtis dissimilarity matrices. Beta diver-
sity PCoA plots were constructed using phyloseq 
(version 1.48.0) (McMurdie and Holmes 2013) using 
rarefied tables. PERMANOVAs were performed on 
the same rarefied matrices using the adonis2 func-
tion (999 permutations) in vegan (version 2.6–6.1) 
(Oksanen et al. 2024). Pairwise differences in bacte-
rial and fungal composition were analyzed using the 
pairwise.adonis function (999 permutations, cor-
rected p < 0.05 with FDR) of the pairwiseAdonis 
(version 0.4.1) package (Martinez Arbizu 2020). 
Taxonomic bar plots were calculated using micro-
eco (version 1.9.0) (Liu et  al. 2021). Differences in 
alpha diversity were assessed using non-parametric 
Kruskal–Wallis tests followed by Fisher’s least signif-
icant difference with Benjamini–Hochberg correction 
(p < 0.05).

Results

Gas fluxes from the plant‑free soil experiment

Soil NO emissions

Both NO emission dynamics and emission lev-
els were remarkably similar for the two subsequent 
experiments, with only minor, quantitatively irrel-
evant effects of exogenous soil NO levels  (Fig.  3). 
This was true for both the 200 and the 400 ppbv˗NO 
concentrations. NO emissions generally increased 
linearly after increasing WFPS from 20 to 40% but 
had returned to background levels close to 0 after 
the first soil flush with exogenous NO. After fertiga-
tion, a clear NO peak was visible, with peak height 
shape, and tailing being unaffected by NO levels. Sta-
tistically significant differences between treatments at 
the end of the incubation were found only at minimal 
emission rates close to 0 and were thus quantitatively 
irrelevant.

Soil CO2 emissions

Similar to the measured NO emission dynamics, also 
CO2 emissions were not affected by exogenous NO 
levels, regardless of whether 200 or 400 ppbv˗NO 
were established in the soil during the flushing periods. 
Again, the reproducibility of flux dynamics in the two 
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Fig. 3   The impact of different soil NO concentrations on soil-
headspace exchange of NO in subsequent headspace flushing 
periods. Panel a compares NO0 and NO200 treatments, while 
panel b contrasts NO0 and NO400 treatments. The four “soil 
flushing” intervals are periods of setting soil NO concentra-
tions, with no soil-headspace exchange measurements. Cumu-

lative emissions for each measurement phase (P1-P6) are 
displayed in the graphs, with total cumulative emissions sum-
marized at the end (ΣP1-P6). Soil sampling events are indi-
cated as T1, T2, and T3. Data are presented as mean ± standard 
error (SE) based on six replicates (N = 6) with an asterisk (*) 
indicating statistical significance

Fig. 4   The impact of varying soil NO concentrations on soil-
headspace exchange of CO2 in subsequent headspace flush-
ing periods. Panel a compares NO0 and NO200 treatments, 
while panel b contrasts NO0 and NO400 treatments. The four 
“soil flushing” intervals are periods of setting soil NO con-
centrations, with no soil-headspace exchange measurements. 

Cumulative emissions for each measurement phase (P1-P6) are 
displayed in the graphs, with total cumulative emissions sum-
marized at the end (ΣP1-P6). Soil sampling events are indi-
cated as T1, T2, and T3. Data are presented as mean ± standard 
error (SE) based on six replicates (N = 6) with an asterisk (*) 
indicating statistical significance
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subsequent incubations was remarkable, suggesting 
that similar soil microbial events occurred for the two 
exogenous NO levels despite the subsequent incuba-
tions. Interestingly, CO2 emission was more affected by 
increasing WFPS rather than by the fertigation (Fig. 4).

Soil N2O emissions

N2O emissions increased sharply after WFPS had 
increased from 20 to 40% and decreased again to 
stabilize at a higher level (Fig.  5). In contrast, N2O 
emissions increased slowly after fertigation to a 
broad peak that did not decline until about 2  weeks 
later. The sharp peak response to water addition was 
probably elevated in the control treatment compared 
to soils of the NO400 treatment, indicating minor ini-
tial treatment differences, but this remained unclear 
because the peak was not fully captured due to instru-
ment failure. In contrast to NO and CO2 emissions, 
we found that exogenous NO levels of 400 ppbv sig-
nificantly reduced N2O emissions during this peak 
period by more than 1/3, while this effect was not 
observed under exogenous NO levels of 200 ppbv 
(Fig. 5).

We also measured NO2 (Fig.  S1) and meth-
ane (CH4) (Fig. S2) fluxes, but these remained 

consistently close to 0 and near the detection limit 
throughout the study and were also unaffected by NO 
concentrations. These results indicate that CH4 and 
NO2 were not important fluxes under the experimen-
tal conditions.

Soil‑dissolved mineral nitrogen, organic nitrogen, 
and carbon

Initial N concentrations (T1 ˗ before the first soil NO 
flushing) were 0.4 g NH4

+-N m−2 and 1.2 g NO3
−-N 

m−2. By day 13 (T2; after the first soil NO flush but 
before fertilization), the NH4

+ levels had decreased to 
less than 0.1 g NH4

+-N m−2 in both treatments.
The NO3

− concentrations increased during the 
incubations mainly due to an increase after T2, i.e., 
after fertigation with NH4

+ solution (Fig.  6). How-
ever, the NO3

− concentrations as well as net nitrifi-
cation rates throughout the incubation period were 
not influenced by the incubation period were not 
influenced by soil NO concentrations. DON con-
centrations showed similar temporal dynamics and 
were also not significantly affected by NO. (Fig. 6c) 
(Fig. 6d). The size of the MBN pools showed variable 
responses to NO concentrations. Microbial biomass 

Fig. 5   The impact of adjusting varying soil NO concentrations 
on soil-headspace exchange of N2O in subsequent headspace 
flushing periods. Panel a compares NO0 and NO200 treatments, 
while panel b contrasts NO0 and NO400 treatments. The four 
“soil flushing” intervals are periods of setting soil NO con-
centrations, with no soil-headspace exchange measurements. 

Cumulative emissions for each measurement phase (P1-P6) are 
displayed in the graphs, with total cumulative emissions sum-
marized at the end (ΣP1-P6). Soil sampling events are indi-
cated as T1, T2, and T3. Data are presented as mean ± standard 
error (SE) based on six replicates (N = 6) with an asterisk (*) 
indicating statistical significance
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N (Fig.  6e) showed an almost significant reduction 
(p = 0.06) in the NO400 treatment (Fig. 6e), with val-
ues of 1.2 g MBN m−2 compared to 1.6 g MBN m−2 
in the NO0 treatment. Furthermore, MBN decreased 
in the course of the experiment at 400 ppbv exoge-
nous NO. In contrast, in the NO200 treatment, we did 
not find such a decrease compared to the control, and 
the temporal trend in the experimental incubation 
showed an increase in MBN (Fig. 6e).

In summary, all the soil parameters showed no 
response to soil NO levels, except for the outlined 
contrasting responses of MBN at NO200 and NO400.

15N‑fertilizer balance in the plant‑free soil 
experiment

The 15N fertilizer recovery in soil TN at the end of 
the experiment ranged from 79 and 84% and was 
not affected by manipulation of soil NO levels. This 
was in good accordance with the sum of 15N excess 
recovery in extractable soil N pools such as mineral 
N, DON, and MBN (Table 1). This total 15N fertilizer 

excess recovery was largely dominated by NO3
− (ca. 

65–70%), followed by MBN (ca. 10–20%) and DON 
(1–4%). In contrast, 15N-recovery in NH4

+ was unde-
tectable due to low N concentrations, indicating 
that all applied 15NH4

+ was largely nitrified, with a 
smaller fraction taken up by microorganisms. At 200 
ppbv we found a more than doubled 15N recovery in 
MBN in the topsoil compared to NO0, which was still 
statistically significant when considering the whole 
soil depth (Table 1). Interestingly, the opposite effect 
was found at higher exogenous NO levels of 400 
ppbv, i.e., a statistically significant reduction of 15N 
excess recovery in MBN compared to the control in 
the 0–5 cm soil layer (Table 1).

Except for lower 15N recovery in MBN at NO400 
and higher 15N recovery in MBN at NO200, exogenous 
NO did not affect fertilizer 15N recovery in the N 
pools analyzed.

Fig. 6   Soil nitrate (NO3
−) concentration and net nitrification 

rates (a, b), dissolved organic nitrogen (DON) concentrations 
(c, d), and microbial biomass nitrogen (MBN) concentra-
tion (e, f) for 200 ppbv˗NO (left panels) and 400 ppbv˗NO 
(right panels) compared to 0 ppbv˗NO controls. Ammonium 

(NH4
+) was partly not detectable due to low nitrogen concen-

trations and therefore is not shown. Fertigation was performed 
immediately following the T2 sampling. Data are presented as 
mean ± standard error (SE), based on six replicates (N = 6)
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Effects of soil flushing with NO on soil microbial 
community

Soil flushing with 200 ppbv˗NO and 400 ppbv-NO 
did not alter the relative abundance of the major bac-
terial and fungal phyla, which varied with experi-
ment, incubation time, or soil depth (Fig.  7). The 
bacterial communities were dominated by Firmicutes 
(36–45%), followed by Actinobacteria (12–14%) and 
Gammaproteobacteria (10–12%) (Fig.  7a), whereas 
the fungal communities were dominated by Ascomy-
cota (47–58%), followed by Basidiomycota (18–25%) 
(Fig.  7b). Importantly, no significant effects of NO 
treatments were detected on overall microbial diver-
sity or community composition, indicating that 
neither 200 ppbv nor 400 ppbv of exogenous NO 
reshaped the structure of the bacterial or fungal com-
munities. Also the OTU richness of the bacterial or 
fungal communities did not change with exogenous 
soil NO concentrations at either 200 ppbv˗NO or 400 
ppbv˗NO compared to 0 ppbv˗NO, but varied depend-
ing on the experiment and incubation time (Fig.  8). 
The number of bacterial OTUs increased with time 
in the experiment with 400 ppbv˗NO, but not in the 

experiment with 200 ppbv˗NO (Fig.  8a). OTU rich-
ness of the fungal communities did not increase with 
time except in control samples at 5 cm depth and T3 
in the 0–200 ppbv˗NO experiment (Fig.  8b). Simi-
larly, no significant effects of increasing NO con-
centration were detected on the beta diversity of the 
bacterial and fungal communities as visualized by 
principal coordinate analysis (PCoA) and tested by a 
permutational multivariate analysis of variance (PER-
MANOVA) (Fig. 9, Table S1). At the surface or to a 
depth of 5 cm, the bacterial beta diversity only varied 
significantly with time in both the 200 ppbv˗NO and 
400 ppbv˗NO experiments, while it also varied with 
soil depth at T3 (Fig. 9a). Fungal beta diversity also 
varied significantly with time and soil depth, but only 
in the 200 ppbv˗NO experiment (Fig. 9b).

Discussion

Effects of NO on soil C and N cycling

The main effect of different NO levels was an 
increase in fertilizer 15N uptake into MBN at 200 

Table 1   RGR​15N fertilizer 
recovery (% of applied 15N 
excess)

The table presents 
the 15N recovery % of 
both Experiment 1 and 
Experiment 2, including 
nitrate (NO3

−), dissolved 
organic nitrogen (DON), 
microbial biomass nitrogen 
(MBN), and total nitrogen 
(TN) across two soil 
depth segments (0–5 cm 
and 5–10 cm). It also 
summarizes the total (Σ) 
recovery in NO3

−, DON, 
and MBN, as well as 
cumulative recovery across 
depths, under varying NO 
treatments. Values are 
reported as mean ± standard 
error (SE) based on six 
replicates (N = 6), with 
statistically significant 
differences indicated by an 
asterisk (*) and in bold

Nitrogen Forms Nitric oxide
treatment

15N recovery %
(0–5 cm)

15N recovery %
(5–10 cm)

15N recovery %
Total Depth

NO3
− NO0 54 ± 2 17 ± 3 70 ± 2

NO200 50 ± 2 18 ± 1 68 ± 2
NO0 54 ± 3 17 ± 2 71 ± 4
NO400 50 ± 2 19 ± 1 69 ± 2

DON NO0 3.0 ± 0.6 0.2 ± 0.0 2.7 ± 0.7
NO200 3.4 ± 1.0 0.3 ± 0.2 3.7 ± 0.9
NO0 3.2 ± 0.7 1.2 ± 0.5 4.4 ± 0.8
NO400 2.3 ± 0.5 0.9 ± 0.1 3.3 ± 0.6

MBN NO0 8.8 ± 1.4 * 5.6 ± 0.6 14.3 ± 1.7 *
NO200 18.4 ± 3.6 4.3 ± 1.1 22.6 ± 3.5
NO0 7.5 ± 0.7 * 3.5 ± 1.0 11.1 ± 1.5
NO400 5.4 ± 0.8 3.6 ± 0.2 9.0 ± 0.8

TN NO0 62 ± 3 22 ± 1 84 ± 2
NO200 65 ± 2 19 ± 1 84 ± 1
NO0 62 ± 2 20 ± 1 82 ± 2
NO400 59 ± 2 20 ± 0 79 ± 2

Σ (NO3
−, DON, MBN) NO0 65.8 ± 2.5 22.8 ± 3.1 87 ± 2.7

NO200 71.8 ± 4.2 22.6 ± 1.5 94.3 ± 4.1
NO0 64.7 ± 3.2 21.7 ± 2.3 86.5 ± 4.3
NO400 57.7 ± 2.2 23.5 ± 1.0 81.3 ± 2.2
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ppbv˗NO, whereas the opposite effect was observed 
at 400 ppbv˗NO: a decrease in MBN and microbial 
15N uptake as determined by chloroform-fumigation 
extraction, accompanied by lower N2O emissions. 
These contrasting responses of microbial N turno-
ver processes at the two NO levels suggest differ-
ent mechanisms triggered by NO effects on soil N 

turnover processes, particularly inorganic N assimila-
tion, with a threshold value for the two mechanisms 
existing between 200 and 400 ppbv exogenous NO. 
Due to its multifaceted role as a signaling agent, at 
200 ppbv exogenous NO could have stimulated 
microbial N metabolism including enhanced het-
erotrophic inorganic N assimilation (Medinets et  al. 

Fig. 7   Relative abundance (in percentage) of the (a) twelve 
most abundant bacterial phyla (class for Proteobacteria) and 
the (b) five most abundant fungal phyla as measured in the 

soil of the mesocosm experiments after flushing with 0–200 
ppbv˗NO and 0–400 ppbv˗NO. The category others cluster 
taxa from less abundant phyla
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2015). This would be possible due to the diffusive 
properties of NO, allowing exogenous NO to enhance 
the functions of cell-endogenous NO produced by 
the NOS enzyme, whereas in the NO0 treatment, the 
physiological cell functioning would be based solely 
on endogenous NO (Medinets et  al. 2015). This 
indicates a signaling vs. toxicity threshold between 
200 and 400 ppbv NO so that its role changed from 
enhancing microbial N assimilation (Gupta et  al. 
2022) at 200 ppbv to the induction of cellular stress 
or enzymatic disruption at 400 ppbv, thereby micro-
bial N assimilation (Conrad 1995). Thus, the con-
trasting effects at 400 ppbv exogenous NO – i.e., 

reduced MBN and 15N uptake and N2O emissions, are 
likely to result from an inhibitory effect of high NO 
concentrations on microbial activity, with however no 
detoxification being visible in the form of increased 
N2O emissions. It should be noted that NO detoxifica-
tion via reduction to N2O does not necessarily result 
in measurable additional net N2O emissions in case 
N2O is predominantly reduced to N2. However, given 
the high NO3

− concentrations and low WFPS values 
under the prevailing experimental conditions, which 
should largely have prevented N2O reductase activity 
in the course of heterotrophic denitrification (Butter-
bach-Bahl et  al. 2013), this would have been rather 

Fig. 8   Boxplot showing 
the (a) bacterial and (b) 
fungal OTU richness in 
two mesocosm experiments 
conducted with soil after 
flushing with 0 vs. 200 ppbv 
NO and 0 vs. 400 ppbv NO. 
Distinct letters above the 
boxes indicate significant 
differences based on non-
parametric Kruskal–Wallis 
tests, followed by Fisher’s 
least significant difference 
with Benjamini–Hochberg 
correction (p < 0.05)
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unlikely in our study. Under conditions of high N 
availability, low organic C content, also nitrifier-den-
itrification by AOB can facilitate the stepwise reduc-
tion of NO2

− to NO, N2O, and finally N2 (Remde and 
Conrad 1990; Wrage et al. 2001), which however also 
appears unlikely to have masked NO detoxification in 
our incubations. Instead, reduced N2O emissions as 
observed here at 400 ppbv NO concentrations could 
be explained by inhibitory effects of NO on N2O for-
mation from Nor enzyme activity, e.g., via formation 
of nitrosyl complexes (Hayashi et  al. 2007; Hen-
driks et al. 1998; Vollack and Zumft 2001). Besides, 
mechanisms such as NO-binding proteins and revers-
ible S-nitrosation (Gusarov and Nudler 2012) may 
have mitigated NO toxicity, thereby contributing to 
reduced N2O formation. Furthermore, reactive soil 
minerals, including manganese oxides, could have 

detoxified NO by oxidizing it to NO3
−, effectively 

bypassing denitrification and reducing N2O produc-
tion (Zhang et al. 2018), but such effects should prob-
ably have been visible also at 200 ppbv˗NO. All of 
this remains somewhat speculative unless 15N labeled 
NO is used and traced into N2O in follow-up studies.

Although we exposed the soils in our experiments 
to NO concentrations typical for N-saturated soils for 
12 days and measured a wide range of biogeochemi-
cal and molecular parameters, from detailed 15N 
fertilizer tracing to C and N trace gas exchange and 
microbial community analysis, we found no further 
effects of NO. This indicates that, at least for the soil 
analyzed in this study and its specific C and N cycling 
patterns, there was little overall effect of exogenous 
NO additions on C and N biogeochemistry, with NO 
acting neither as a toxic nor as a signaling compound. 

Fig. 9   PCoA analyses of 
Bray–Curtis dissimilari-
ties in (a) bacterial and (b) 
fungal communities in two 
mesocosm experiments 
conducted with soil after 
flushing with 0 vs. 200 
ppbv˗NO and 0 vs. 400 
ppbv˗NO
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Our measurements indicate that autotrophic nitrifica-
tion was the dominant process in our soils. The high 
rates of net nitrification and 15N conversion to NO3

−, 
remaining unaffected by exogenous NO, suggest that 
cell function in nitrifiers was facilitated by sufficient 
endogenous NO production (Medinets et  al. 2015). 
This N cycling pattern is characteristic of soils with 
high oxygen and low C availability, which favors 
autotrophic nitrification over heterotrophic micro-
bial activities, such as denitrification and inorganic N 
assimilation (Butterbach-Bahl and Dannenmann 2011 
and 2012). This was also clearly demonstrated by 
the generally low 15N uptake into microbial biomass 
and low soil respiration rates. Thus, the heterotrophic 
activity of free-living microorganisms, which is also 
important for competition with plants for inorganic N, 
was already impaired by limited C availability before 
the addition of exogenous NO. Therefore, further 
studies with more C-rich soils are needed to analyze 
the effects of NO on heterotrophic microbial activity 
and processes.

Limitations of the present study and 
recommendations for further studies

This study used an advanced soil-incubation system 
specifically designed for precise manipulation of 
soil NO concentrations, allowing for highly accurate 
measurements of greenhouse gas and reactive gas 
fluxes. The system’s high-resolution capabilities and 
low detection limits facilitated the detection of sub-
tle changes in emissions (Subramaniam et al. 2024). 
In addition, a meticulously conducted, well-contained 
15N fertilizer balance was used to accurately N trans-
formations with precision. However, despite the 
use of these state-of-the-art methods, NO treatment 
effects were mainly limited to quantitatively small 
changes in N2O emissions. On the one hand, this 
could indicate a limited effect of NO in soil systems 
compared to pure cultures, at least under the given 
experimental conditions. Even so, it could be due to 
methodological limitations that should be overcome 
in future studies.

First, the inherent technical setup of our system 
did not allow automated gas flux measurements while 
maintaining exogenous NO availability in the soil. 
Therefore, it would be desirable to have a system that 
allows for simultaneous soil and headspace flushing, 

combining exogenous NO manipulation with simul-
taneous C and N trace gas flux measurements. As 
longer-term microbial adaptations could not be cap-
tured in this short-term incubation study, we also 
recommend extending the NO soil flushing periods 
beyond the 12 days of this study.

Second, the range of exogenous NO concentrations 
was likely insufficient, also in light of the limited 
research available on in situ soil NO concentrations. 
(Medinets et al. 2019) reported peak soil air NO con-
centrations ranging from 492 to 800 ppbv in differ-
ent soil layers under summer conditions, especially 
after rainfall in the Höglwald forest soil in southern 
Germany. Similarly, (Gut et  al. 2002) observed NO 
concentrations ranging from 20 to 460 ppbv in Ama-
zonian rainforest soils. In agricultural systems, (Gut 
et  al. 1999) measured soil NO concentrations at a 
2 cm depth in a wheat field fertilized with either 19 kg 
cattle slurry-N ha−1, 40 kg N ha−1 from NH4NO3 fer-
tilizer, or remaining unfertilized. They observed max-
imum NO concentrations of 85 ppbv following slurry 
application, 410 ppbv after NH4NO3 fertilization, 
and 63 ppbv in the unfertilized plot. This generally 
justifies the NO concentrations we applied, but we 
encourage the use of wider ranges of exogenous NO 
additions in future studies, including higher NO lev-
els, when manipulating NO in experimental incuba-
tions. This is also because soil NO measurements are 
unlikely to capture the presumably very high NO con-
centrations in small-scale nitrification hot spots. Also, 
studies on biofilm formation (e.g., Pseudomonas aer-
uginosa), and dispersal suggest that this may depend 
on higher NO concentrations than used in this study 
(Arora et al. 2015).

Third, our pioneering study focused on only one 
specific soil. Given that this soil has an N cycle domi-
nated by autotrophic nitrification and rather reduced 
heterotrophic microbial activity due to lack of avail-
able C and low water content, further research should 
focus on using more biologically active C-rich soils, 
such as those from grasslands, forests, or agricultural 
soils after residue incorporation. We also suggest 
assessing the role of NO at various soil WFPS.

Furthermore, the use of 15N-labeled NO is rec-
ommended for future studies to gain more detailed 
insights into the fate of NO in plant-soil-microbe sys-
tems (Stark and Firestone 1995), especially its role 
as an electron acceptor during denitrification. Given 
the role of NO in plant metabolism, the role of plants 
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as NO source, and the potentially important role in 
plant-soil-microbe interactions (Medinets et al. 2015), 
the absence of plants in this study limits ecological 
extrapolation. Therefore, the inclusion of plants in the 
experimental design may on the one hand complicate 
the experimental setup, but is of paramount impor-
tance towards a quantitative understanding of the role 
of NO in plant-soil-systems.

Conclusion

This study revealed for agricultural soil that – com-
pared to exogenous NO – 200 ppbv of exogenous NO 
stimulated fertilizer N uptake into microbial biomass, 
while the opposite effect was observed at 400 ppbv 
exogenous NO. This suggests an important, strongly 
concentration-dependent role of exogenous NO in 
nitrogen retention in agricultural soils, which how-
ever needs to be further investigated in future studies.
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